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Abstract: Athletes utilise numerous strategies to reduce body weight or body fat prior to competition.
The traditional approach requires continuous energy restriction (CER) for the entire weight loss
phase (typically days to weeks). However, there is some suggestion that intermittent energy
restriction (IER), which involves alternating periods of energy restriction with periods of greater
energy intake (referred to as ‘refeeds’ or ‘diet breaks’) may result in superior weight loss outcomes
than CER. This may be due to refeed periods causing transitory restoration of energy balance.
Some studies indicate that intermittent periods of energy balance during energy restriction attenuate
some of the adaptive responses that resist the continuation of weight and fat loss. While IER—like
CER—is known to effectively reduce body fat in non-athletes, evidence for effectiveness of IER in
athletic populations is lacking. This review provides theoretical considerations for successful body
composition adjustment using IER, with discussion of how the limited existing evidence can be
cautiously applied in athlete practice.

Keywords: intermittent energy restriction; diet—reducing; weight loss; caloric restriction;
adaptive thermogenesis; composition—body; body weight maintenance

1. Introduction

Athletes often undertake periods of weight loss in an attempt to reduce fat mass (FM) while
retaining fat free mass (FFM). Although absolute body weight loss may be the primary outcome of
concern for individuals with overweight or obesity, it is important that weight loss strategies adopted by
athletes minimise losses of FFM, so as not to compromise training and performance [1]. Altering body
composition in such a manner may be advantageous to the athlete for various biomechanical, aesthetic,
and locomotive reasons, thereby increasing the likelihood of competitive success in a target weight-class
(e.g., combat sports, weight lifting), weight-sensitive sports (e.g., endurance events, ski jumping),
or aesthetically judged sports (e.g., gymnastics and bodybuilding) [2]. Previous literature indicates
that athletes commonly reduce their absolute body weight by 5–10% over a number of months
prior to competition [3,4], although more dramatic weight losses of ≥7% of body weight within
24 h have also been observed [5,6]. To achieve the desired weight loss (and to maintain sports
performance), typically combinations of nutritional and exercise interventions are recommended for
athletes [1]. Within this population, the most common nutritional weight loss strategy implemented
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is continuous energy restriction (CER), for the duration of the weight loss phase [7,8]. Specifically,
CER involves reducing energy intake every day relative to weight maintenance energy requirements [9].
Despite being currently accepted as an evidence-based dietary intervention for weight loss, CER is
accompanied by a number of behavioral, metabolic, and endocrine responses that collectively threaten
dietary adherence, oppose the continuation of fat loss, and predispose the individual to weight and
fat regain upon completion of the period of energy restriction (ER) [10–15]. Furthermore, it is well
documented in athletes that ER, in conjunction with high training loads, can lead to loss of FFM
and decreased performance via reductions in muscle strength, reflexes, and glycogen stores and
increased irritability [2,16–18]. Elite athletes competing at a reduced body mass in weight-class and
aesthetic sports also experience increased risk of injuries and chronic fatigue, and impaired immune
function, which can lead to more frequent episodes of illness [19]. In these sports, failure to reach
target body weight or body composition in the days or weeks prior to contest through the use of
ineffective or suboptimal dietary strategies may cause athletes to depend on more rapid weight loss
techniques that could jeopardise performance and possibly be dangerous. Such techniques include
acute “water weight” loss, a practice that often involves severe dehydration via restriction of fluid
intake, and actively pursuing sweating through exercise (often in combination with “sweat suits”) or
the use of saunas and hot baths [20]. Dehydration is known to adversely affect athletic performance
by reducing body water, electrolytes, and glycogen, which alter a number of physiological processes
including metabolism, the regulation of body temperature, and cardiovascular function [7,20].
An additional challenge that athletes face when embarking on weight loss is the multitude of diet
subtypes, the propagation of unfounded fad diets by the media, as well as conflicting nutritional
research, all of which contribute to confusion regarding optimal manipulation of dietary variables for
athlete weight reduction [21]. As such, there is an inherent need to review current and novel dietary
strategies as a means of providing athletes with sound, evidence-based guidelines that facilitate the
realisation of their body composition goals, without jeopardising health or performance.

Intermittent energy restriction (IER) is one nutritional strategy that has gained recent research
attention [22–27] and which could potentially be of relevance to athletes wishing to reduce weight.
IER involves alternating periods of ER with periods of greater energy intake (often referred to as
‘refeed’ periods or ‘diet breaks’), within the weight loss phase. Of note, these ER and refeed periods
have also been referred to as ‘fast’ and ‘feed’ phases in some previous publications [9]. The proposed
goal of implementing refeeds during periods of ER is to briefly stimulate the release of some regulatory
hormones that play a positive role on fat loss and satiety and increase metabolic rate [2]. While a
conceivable metabolic and hormonal model to attenuate ER-induced adaptations through the use of
an IER regime exists, recent literature has not been definitive. The concept of integrating periods of
greater energy intake within a weight loss phase received research attention following work by Wing
and Jeffery [28]. Investigators examined the effects of disturbing the momentum of weight loss in an
attempt to induce dietary relapses during a 14-week weight loss program. Surprisingly, prescribed diet
breaks did not lead to a backsliding of progress, with participants who adopted either a six-week diet
break at Week 7 of the program or two-week diet breaks after Weeks 3, 6, and 9 of the program not
demonstrating any less weight losses (at 0–5 months or 0–11 months) when compared to the control
group who dieted continuously for the 14-week program. These findings caused some researchers
to speculate that diet breaks or refeeds could encourage greater adherence to longer-term diets in
individuals needing to lose significant amounts of body fat.

Previous research in the realm of IER has focused on populations with overweight or obesity [29].
However, the metabolic and training status of athletes is considerably different from that of people
who are overweight or who are sedentary. Athletes are typically of a healthy body composition and
undertake high levels of physical activity and consequently have high energy expenditures, as well as
a low probability of experiencing metabolic diseases or preliminary states of diseases, which are often
observed in populations that are overweight and inactive [30]. Therefore, it is possible that these factors
could influence the response to IER. Additionally, it is conceivable that IER strategies could be more
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likely to benefit athletes (or lean people in general) as evidenced by leaner individuals demonstrating
two- to three-fold greater protein losses [31], greater reductions in testosterone levels [32], and a higher
proportion of weight loss from FFM during ER when compared to individuals with a BMI in the
overweight or obese range [33]. To our knowledge, no published research is currently available on
IER in athletes. Thus, the purpose of this review is to discuss the existing body of literature on IER,
outline its potential as an alternative weight loss strategy for athletes, and set a platform for future
investigation in athletes. This review will also utilise the available evidence to develop theoretical
recommendations for athletes considering IER.

2. Methods

PubMed, MEDLINE, SPORTDiscus and CINAHL electronic databases were searched online.
Each author was assigned a section of the manuscript to write specific to their area(s) of
expertise. Authors performed searches for key words associated with their section(s) of the
manuscript; intermittent energy restriction, continuous energy restriction, adaptive thermogenesis,
adaptive responses to energy restriction, athlete weight loss, nutrition for body composition
management, and nutrition for athletic performance were the selected topics. Long-term human
studies with individuals of a healthy body weight comparing energy-matched IER and CER protocols
were preferentially selected; however, given the paucity of such studies, studies using overweight
individuals and studies using animal models were also selected. In addition, author names and
reference lists were used for further search of the selected papers for related references. As this review
is intended to serve as an evidence-based guide and the available data applicable to athletes is limited,
a narrative review style was chosen.

3. Adaptive Responses to Energy Restriction

Before discussing the existing literature and potential benefits of IER, it is worthwhile to review
the adaptive responses to energy restriction and how they affect body composition management.

3.1. Energy Expenditure

Resting energy expenditure (REE) typically constitutes 60–75% of total daily energy expenditure
(TDEE) and is a function of body mass (particularly FFM, but also FM). Thus, weight loss causes a
decline in REE via the loss of metabolically active tissue [2]. However, weight-loss-induced reductions
in REE—which occur in both lean and obese individuals—exceed that which is predicted by decreases
in FFM and FM alone [34,35]. Termed “adaptive thermogenesis” (AT), this metabolic alteration
successively minimises the degree of energy deficit achieved by ER. AT can partially explain why
weight loss plateaus are encountered despite continued intake of a diet with less energy than before
weight loss, and likely contributes to the restoration of baseline body weight upon termination of an
energy-restricted state [35–37]. AT has been studied frequently in overweight and obese populations,
but not in athletes. One investigation reported that AT explained ~50% of the less-than-expected weight
loss in obese women undergoing ~14 weeks of 4200 kJ per day of ER [38]. A recent review highlighted
the potential impact of AT by concluding that weight loss strategies are only transiently effective, as the
majority of overweight or obese individuals were not able to achieve and maintain a 10% reduction
in absolute body weight over 12 months [12]. A meta-analysis also showed that in individuals who
completed structured weight loss programs, over a third of the weight lost returned within the first
year, with the majority of the rest gained back within 3–5 years [39]. Furthermore, in men with a
healthy body weight, 24 weeks of ER (50% of energy requirements for weight maintenance) caused a
40% reduction in baseline energy expenditure. Weight loss accounted for 25% of this reduction and AT
explained the remaining 15% [40].

Along with decreases in the resting component of TDEE, non-resting components,
including exercise activity thermogenesis (EAT; energy expended for sports-like exercise and physical
training) and non-exercise activity thermogenesis (NEAT; energy expended for activities that do not
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include sleeping, eating or sports-like exercise), also decline as reduced body mass demands less energy
to complete certain activities, particularly when weight-bearing locomotion is involved [36,41–45].
One cross-sectional study found an 18% lower TDEE in people with obesity after a body weight
loss of 23% when compared to individuals with the same body weight who had never dieted [42].
It was observed that the decrease in TDEE was largely due to reductions in non-resting components,
accounting for 71% of the observed difference. Finally, the thermic effect of feeding (TEF) is lowered
by consuming less energy overall during ER [41,46]. Reductions in TEF accounted for 18% of the fall
in TDEE in people with obesity after weight loss [41]. Thus, the evidence suggests that ER and the
associated weight loss cause a metabolic downshift in all components of TDEE (Figure 1), which could
significantly influence long-term body weight management.
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Figure 1. Adaptive responses in energy expenditure during energy restriction (ER). Over the course
of a weight loss phase, total daily energy expenditure will decrease as a consequence of declines in
resting energy expenditure (REE), non-exercise (NEAT) and exercise activity thermogenesis (EAT),
and the thermic effect of feeding (TEF). This results in a lessening of the energy deficit, which can cause
plateaus in weight loss if energy intake matches the new level of energy output. Plateaus may only be
overcome by a further reduction in energy intake or an increase in activity levels.

3.2. Endocrine Responses

A number of endocrine responses also accompany ER, including variations in thyroid,
appetite-regulating, and steroid hormones that collectively influence energy expenditure,
body composition, and satiety. Thyroid hormones play a prominent role in regulating energy
expenditure whereby decreases in circulating or tissue levels of active forms reduce thermogenesis and
REE [47]. Previous research suggests that up to 30% of REE is determined by thyroid hormones [48].
In terms of body composition, clinical observations in humans show that hypothyroidism can lead to a
metabolic shift culminating in an increase in FM in combination with reduced FFM [49]. As reviewed
previously, ER is associated with decreased thyroid hormone secretion (T3 and T4) in lean healthy
men and women [50]. A similar finding was also observed in a case study of a competitive athlete
undergoing ER in preparation for a bodybuilding contest [51]. Additionally, in overweight or obese
people, moderate ER has been shown to reduce overall hypothalamo-pituitary-thyroid axis function,
causing a decline in circulating or tissue concentrations of active thyroid hormones, which is associated
with a significant decrease in energy expenditure [52]. It is therefore possible that the inhibition
of normal thyroid function in athletes undergoing ER may negatively influence the propensity for
long-term weight/fat loss and increase the likelihood of loss of FFM and weight/fat regain.

Two well-known appetite-regulating hormones are leptin and ghrelin, which work in opposition
of each other in this context. Leptin, a hormone largely synthesized in adipocytes, responds to
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energy availability such that low levels increase appetite while high concentrations yield the opposite
response [53]. Leptin has also been shown to increase energy expenditure via effects on the
hypothalamus [54]. Worthy of note, reductions in circulating leptin are frequently observed in ER
studies of lean competitive athletes [13,14,51,55]. In men with a healthy body composition undergoing
three weeks of ER (50% of energy requirements for weight maintenance), plasma leptin was reduced
by 44% [56]. Another trial found that four days of ER (~60 kJ/kg of FFM per day) reduced circulating
leptin by 53–56% in regularly exercising men [57]. The above evidence suggests leptin not only
responds to overall adiposity but also short-term nutrient flux. Pharmacological administration of
leptin can reverse some of the adaptive responses to ER—namely—reductions in REE, skeletal muscle
work efficiency, and circulating thyroid hormone concentrations [58], yet further discussion of such
interventions is beyond the scope of this paper.

In general opposition of leptin, the orexigenic hormone ghrelin reflects acute and chronic feeding
states by increasing the drive to eat during periods of fasting and low energy intake [59]. As reviewed
previously, since plasma ghrelin levels are dependent on recent energy intake, this hormone plays
an important role in regulating hunger and meal initiation [60]. One study reported that plasma
ghrelin-like immunoreactivity increased 31% after 12 h of fasting and was reduced by 22% immediately
after a meal [59]. Leptin and ghrelin (absolute amounts and ratios) were significantly correlated with
FM loss and changes in REE at both baseline and following 12 weeks of ER in obese women [61].
Therefore, lower leptin and higher ghrelin appear to oppose FM loss and may be viable biomarkers
for predicting the magnitude of metabolic adaptations to ER, yet more research is needed to
confirm. Decreased leptin and increased ghrelin in response to ER may oppose potential weight
loss by significantly altering appetite (which could cause compensatory eating) or by reducing
energy expenditure.

Insulin, which is an additional adiposity signalling hormone, responds to energy availability in a
similar manner to leptin and plays an important role in preventing muscle protein degradation [62].
In humans—with either a healthy body weight or with obesity—significant reductions in fasting insulin
concentrations have been reported during ER, potentially threatening maintenance of FFM [63–66].
Reduced insulin levels during ER are disproportionately low when compared to equal relative FM at
a stable body weight, indicating a physiological shift acting to correct the state of energy depletion
and favour weight regain [67]. Athletes recovering from strenuous exercise also require depleted fuel
stores to be replenished, primarily through the insulin-mediated uptake of glucose in muscle [68].
Therefore, reduced insulin levels as a consequence of ER may impact the restoration of muscle glycogen
stores. The importance of sufficient muscle glycogen content for the athlete is further discussed in
Section 6.2.3.

Reduced activity of the reproductive and somatotropic axes is also a possibility during dynamic
ER [49]. For instance, 8 weeks of ER (via heavy exercise and reduced energy intake) significantly
reduced serum testosterone concentrations in healthy lean men [69]. Testosterone may be of particular
interest to athletes due to its role in stimulating muscle protein anabolism leading to accumulation
(and maintenance) of muscle mass [62]. However, several studies also confirmed a significant
inverse correlation between reductions in FM and circulating testosterone levels [70]. Interestingly,
some studies show that ER in men with a BMI in the overweight range either increases or has no
impact on circulating free or total testosterone levels [71]. Therefore, reductions in testosterone during
ER may only be of concern to individuals with a lean body composition. While reduced circulating
concentrations of insulin-like growth factor-1 (IGF-1) has been observed in some cases of ER [72],
it does not appear that growth hormone (GH) is significantly disrupted, as evidenced by no change in
GH levels after 6 months of ER (25% below weight maintenance requirements) [73].

In contrast to testosterone, serum increases in the glucocorticoid cortisol causes protein
catabolism in healthy subjects [74]. Furthermore, a rodent trial showed glucocorticoid administration
inhibited the potent energy dissipation and satiating effects of leptin, thereby suggesting
glucocorticoids play a counterregulatory role on leptin action and contribute to leptin resistance [75].
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Chronic hypercortisolism regularly occurs in highly trained athletes [76]. Additionally, salivary cortisol
levels were elevated in male and female competitive gymnasts when compared to age-matched
non-athletes [77]. While psychological stress likely played a role in the observed cortisol elevations,
ER was a probable significant contributor. This is further evidenced by significant increases in serum
cortisol in highly active lean men completing 8 weeks of ER resulting in weight loss [69]. As discussed
in a narrative review, glucocorticoids such as cortisol also promote FM accretion [49]. Therefore,
increases in cortisol output during ER may impede athlete weight loss efforts by promoting the
conservation of FM and loss of FFM and by inhibiting the actions of leptin.

While not an exhaustive list of endocrine responses associated with ER, the above text illustrates
a shift in the hormonal milieu in response to energy deprivation that collectively promotes reductions
in energy expenditure and an increased drive to eat and threatens the retention of FFM (See Figure 2).
For a more comprehensive explanation of the endocrine responses accompanying ER, we direct the
reader to the following reviews [49,52,78].
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Figure 2. Adaptive responses in the endocrine system during energy restriction (ER). In response
to ER, the resulting energy deficit and corresponding weight loss causes an increase in the drive
to eat and reduced energy expenditure, collectively making the continuation of weight loss more
challenging. Changes in circulating levels of orexigenic and anorexigenic hormones communicate a
nutrient deprivation signal to the brain, causing stimulation of appetite, and a decrease in feelings of
satiation. Furthermore, ER causes a shift in circulating levels of hormones involved with the regulation
of thermogenesis and energy expenditure. Changes in these hormones indicate a physiological shift
directed at correcting the state of energy deprivation and favouring weight regain. EAT: exercise activity
thermogenesis; FFM: fat free mass; NEAT: non-exercise activity thermogenesis; PYY: peptide YY;
REE: resting energy expenditure.

3.3. Adaptations in Adipose Tissues

The cellularity and metabolic characteristics of adipose tissues may contribute to the biological
tendency for weight regain after weight loss. Reductions in body fat is accompanied by a decrease
in the size of adipocytes as energy stores are mobilised [79,80], yet no discernible change in the
number of adipocytes present in adipose tissue is observed [79–82]. Smaller adipocytes secrete
less leptin for a given FM [12], therefore implying that the reduction in adipocyte size—as well as
total FM—may contribute to the ER-induced decline in circulating levels of leptin. Furthermore,
smaller adipocytes exhibit higher glucose uptake rates [83,84], a greater expression of genes favouring
energy storage [85–87], and reduced lipolysis [12] compared to larger adipocytes. As reductions in
adipocyte size has also been linked to remodelling of the extracellular matrix to accommodate this
change in propensity for nutrient storage, it has been proposed that weight loss induces cellular
stress that modifies the metabolic profile of adipocytes [88]. Conceivably, such a change would only
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be relieved via increased storage of lipid [89]. While the number of adipocytes remains relatively
constant during adulthood [90], there are circumstances in which adipocyte number may increase.
Previously published research in rodents demonstrates that adipocyte hyperplasia can occur in the
early stages of weight regain after weight loss, resulting in a greater number of adipocytes in adipose
tissue depots and thus a greater potential for storage of lipid [91]. Hyperplasia in adipose tissue could
conceivably amplify the likelihood of rapid weight regain not only by increasing the size of the depot
but also through the creation of small adipocytes with an enhanced capacity for uptake and storage of
ingested nutrients (see Figure 3). It has been speculated that this phenomenon may partially explain
situations in which pre-ER body weight is surpassed during the post-weight loss period [12,79,80,86].
Thus, the adaptations in adipose tissue—in combination with changes in energy expenditure and the
endocrine milieu—can present a substantial challenge not only for successful weight loss but also for
the maintenance of the reduced body weight.
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in the size of adipocytes, with no discernible change in adipocyte number in the adipose depot.
Due to the modification of the metabolic profile of these smaller adipocytes, the potential for storage
of triglyceride increases, subsequently making the maintenance of lost weight more challenging.
The possibility of adipocyte hyperplasia early in the weight regain period may also increase the
likelihood of weight-reduced individuals surpassing their pre-energy-restriction body weight.

4. Intermittent Energy Restriction: An Overview of Effectiveness

4.1. Intermittent Fasting

IER lacks clear definition, acting as an umbrella term encompassing a variety of dietary protocols
that utilise different energy prescriptions during ER and refeeds as well as the length of these periods.
The most common IER used in clinical trials is often referred to as ‘intermittent fasting’ (IF) [29].
IF has been defined previously as severe reduction of energy intake on 1–7 days, followed by a
relatively greater energy intake on refeed days [29,92]. There may or may not be restrictions placed
on the quantities and types of foods and beverages consumed during these refeed periods [27].
It is important to note that IF is one form of IER but has also been used to describe various other
dietary interventions including time-restricted feeding approaches (such as the 8 h feeding window
method) [93]. Alternate-day fasting is a sub-type of IF that involves partial or complete restriction of
energy intake for 24 h, followed by a refeed day where food is consumed ad libitum for 24 h [9,94–96].
Another sub-type of IF—known as the 5:2 (or ‘fast’) diet—alternates two days of severe ER with five
refeed days per week [27,97,98]. The available evidence indicates that IF is not superior to CER as a
weight loss strategy. In a recent review of 13 randomised comparisons of CER and IF in overweight
individuals, all studies demonstrated comparable reductions in body weight where overall energy
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intake was matched [24]. In another recent review investigating the effectiveness of randomised
controlled trials of IER compared with CER in overweight and obese adults, the authors concluded
that IER involving ER on at least one day per week but no greater than seven days were equally
effective as CER for short-term weight management [99]. Furthermore, the majority of trials reporting
body composition outcomes have shown equal efficacy for reducing FM, visceral fat stores, and waist
circumference when IF regimes were compared to CER in adults with overweight and obesity [24,92,97].
While the mass of literature has failed to establish a benefit to short-term IER regimes implementing
ER on 1–7 days per week, greater weight loss efficiency (weight lost per unit of ER) was observed
in mice with diet-induced obesity following an IER diet that involved 5–6 days of ER (82% of ad
libitum chow-fed control) followed by ad libitum refeeding for 1–3 days, compared to CER (82% of ad
libitum chow-fed control), after 12 weeks (0.042 ± 0.007 versus 0.018 ± 0.001 g/kJ, respectively) [27].
Despite the IER group eating significantly more than the CER group (91 versus 82% of control intake,
respectively), the same magnitude of weight loss was achieved in both groups. Although these findings
have not been replicated in published controlled human trials, potential benefits of IER have been
recently demonstrated in preliminary research presented as a conference abstract [100,101]. An IER
regime alternating five days of ER with twice-weekly refeeds was superior to CER in preserving REE
(−40 kcal·d−1, p = 0.410 versus −78 kcal·d−1, p = 0.017) and FFM (−0.4 kg, p = 0.460 versus −1.3 kg,
p = 0.001)—while causing equivalent FM loss (2.8 versus 2.3 kg)—among resistance-trained athletes
completing seven weeks of ER (energy intake 25% below weight maintenance energy requirements).

In one review, it was reported that alternate-day fasting caused less loss of FFM, with equivalent
FM loss when compared to CER in adults with overweight and obesity [9]. This caused some to suggest
that IF may be a more effective strategy than CER for mitigating FFM losses during ER. However,
a recent randomised controlled trial involving 100 adults with overweight or obesity randomised to
alternate day fasting or CER for 24 weeks showed similar improvements in the FFM-to-total-mass
ratio between groups [25]. Additionally, a recent systematic review of 31 publications comparing IF
with CER in humans of any age or BMI failed to demonstrate superior FFM retention using IF [27].

One proposed benefit of adopting an IER regime over CER is that refeed periods may provide a
mental break from extended periods of ER, leading to improved long-term adherence to the dietary
schedule. In one randomised controlled trial, participants were randomly allocated to a role-playing
scenario that simulated either seven days of an IER model (six days of 1300 kcal/d followed by one
day of 2700 kcal/d refeed) or CER (seven days of 1500 kcal/d) [102]. While both simulated conditions
were energetically matched (10,500 kcal per week), participants in the IER group demonstrated a
higher-than-expected self-regulatory ability (they were expected to experience more positive affect
during the diet phase) and generated more strategies to overcome dietary temptations than participants
in the CER group. However, in a recent systematic review comparing short-term IER protocols (≤7 days
cumulative ER) with CER, dropout rates varied between 0 and 40% and were comparable between both
groups, and to previous reports within other CER studies [24]. This suggests long-term adherence to
short-term IER protocols may be similar to CER, presenting a viable—albeit not superior—alternative
for individuals who find sustained daily ER difficult.

4.2. IER Regimes Involving Longer Periods of ER

In contrast to the above findings, some recent randomised controlled trials show better weight and
fat loss with certain types of IER that incorporated longer-term periods of ER and refeeds (i.e., ≥7 days
of cumulative ER alternated with a lesser degree of prescribed dietary restriction, or no prescribed
dietary restriction), when compared to CER. One possible reason for the apparently greater weight
and fat loss, is that these protocols may mitigate some of the adaptive responses to ER that oppose
ongoing weight and fat reduction. A six-week diet involving CER (45% of weight maintenance
energy requirements) was compared with a six-week diet involving IER that cycled 11 days of ER
(55% of weight maintenance energy requirements) with 3 days of ad libitum feeding in 74 women
with obesity [98]. There was significantly greater weight loss at four weeks after completion of the
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diet in women in the IER than in the CER group (5.8 ± 1.2 versus 3.4 ± 1.4% of initial body weight,
respectively). Moreover, REE was maintained at higher levels in the IER than in the CER group.
Perhaps the most convincing evidence for adopting a long-form IER protocol (over CER) can be found
in findings from the recent “MATADOR” study. In this randomised controlled trial, 16 weeks of
CER (67% of weight maintenance energy requirements) was compared with 16 weeks of ER applied
intermittently as eight two-week blocks of ER (67% of weight maintenance energy requirements)
alternating with seven two-week blocks of EB (where energy intake is matched to energy requirements
for weight maintenance) in 51 men with obesity [22]. Significantly greater weight loss (14.1 ± 5.6
versus 9.1 ± 2.9 kg, p < 0.001) and FM loss (12.3 ± 4.8 versus 8.0 ± 4.2 kg, p < 0.01), as well as
less compensatory reduction in REE (−360 ± 500 versus −750 ± 500 kJ·d−1, p < 0.05) and better
maintenance of lost weight at a six-month follow-up (−11.1 ± 7.4 versus −3.0 ± 4.4 kg, p = 0.001),
were observed in the IER compared to the CER group. Furthermore, FFM loss was the same in both
groups despite greater FM loss in the IER group. In a third randomised controlled trial, equal weight
loss was achieved among overweight women following either 8 weeks of CER (5500 kJ ER per day)
or 8 weeks of IER administered as one week of ER (5500 kJ ER per day) alternating with one week
of the participants’ habitual diet (no prescribed ER) (−3.2 ± 2.1 kg CER, −2.0 ± 1.9 kg IER) [103].
While findings could be interpreted as a lack of superiority to this long-form IER protocol due to
equivalent weight loss, it is important to consider that the IER group spent less time in ER compared
to the CER group (4 weeks in IER versus 8 weeks in CER), resulting in greater weight loss efficiency.

Findings from these trials indicate that these forms of IER attenuated the adaptive response to
ER, at least with respect to reductions in REE. Strategies—such as intermittent refeed periods—that
potentially attenuate reductions in energy expenditure are important, as literature demonstrates people
who regained >30% of weight lost after ER showed reduced energy expenditures when compared to
those who remained weight-stable (within <±20% of weight change) [104]. Furthermore, the estimated
risk of gaining >7.5 kg in body weight over a two-year longitudinal study increased fourfold in people
with low 24 h energy expenditures compared to people with high 24 h energy expenditures [105].
Adjusted REE was also found to predict the gain in body weight over a four-year follow-up period [105].

Although the above long-form IER protocols display some inherent benefits over CER, in a recent
systematic review and meta-analysis—which did not include the above studies—five randomised
controlled trials of IER incorporating ≥7 days of cumulative ER were compared with CER for the
treatment of overweight and obesity in adults [23]. Meta-analysis demonstrated no significant
difference in weight loss at post-intervention (weighted mean difference: −1.36 [−3.23, 0.51], p = 0.15)
or at follow-up (weighted mean difference: −0.82 [−3.76, 2.11], p = 0.58). To help clarify the disparity
in the literature, Peos and colleagues will be the first to examine a long-form IER regime alternating
three-week blocks of ER with one-week blocks of EB in resistance-trained athletes [106] (See Figure 4).

While attenuation of the decline in REE has been observed with some IER protocols when
compared to CER, it remains to be seen whether these dietary regimes also result in minimisation of
some of the other adaptive responses associated with ER. Under some circumstances, a number of
the adverse metabolic and hormonal outcomes associated with weight loss have been reported to be
quickly reversed upon restoration of EB, namely normalisation of fasting and postprandial energy
expenditure, and circulating levels of leptin and thyroid [107–113]. In one trial among postmenopausal
women, following 10 days of ER (3350 kJ per day), reductions in body composition-adjusted REE
and circulating levels of thyroid hormones were returned to baseline after 10 days in EB [114].
Furthermore, in overweight women following a very-low-energy diet for 28 days, suppressed serum
thyroid parameters returned to baseline concentrations following one week of increased energy intake
(4200 kJ) [115]. Thus—as previously discussed in a narrative review—a number of the undesirable
consequences associated with weight loss are related to the ER itself, not to the weight loss per se [12].



Sports 2019, 7, 22 10 of 26

Sports 2019, 7, x FOR PEER REVIEW 9 of 25 

 

were observed in the IER compared to the CER group. Furthermore, FFM loss was the same in both 
groups despite greater FM loss in the IER group. In a third randomised controlled trial, equal weight 
loss was achieved among overweight women following either 8 weeks of CER (5500 kJ ER per day) 
or 8 weeks of IER administered as one week of ER (5500 kJ ER per day) alternating with one week of 
the participants’ habitual diet (no prescribed ER) (−3.2 ± 2.1 kg CER, −2.0 ± 1.9 kg IER) [103]. While 
findings could be interpreted as a lack of superiority to this long-form IER protocol due to equivalent 
weight loss, it is important to consider that the IER group spent less time in ER compared to the CER 
group (4 weeks in IER versus 8 weeks in CER), resulting in greater weight loss efficiency. 

Findings from these trials indicate that these forms of IER attenuated the adaptive response to 
ER, at least with respect to reductions in REE. Strategies—such as intermittent refeed periods—that 
potentially attenuate reductions in energy expenditure are important, as literature demonstrates 
people who regained >30% of weight lost after ER showed reduced energy expenditures when 
compared to those who remained weight-stable (within <±20% of weight change) [104]. Furthermore, 
the estimated risk of gaining >7.5 kg in body weight over a two-year longitudinal study increased 
fourfold in people with low 24 h energy expenditures compared to people with high 24 h energy 
expenditures [105]. Adjusted REE was also found to predict the gain in body weight over a four-year 
follow-up period [105]. 

Although the above long-form IER protocols display some inherent benefits over CER, in a 
recent systematic review and meta-analysis—which did not include the above studies—five 
randomised controlled trials of IER incorporating ≥7 days of cumulative ER were compared with 
CER for the treatment of overweight and obesity in adults [23]. Meta-analysis demonstrated no 
significant difference in weight loss at post-intervention (weighted mean difference: −1.36 [−3.23, 
0.51], p = 0.15) or at follow-up (weighted mean difference: −0.82 [−3.76, 2.11], p = 0.58). To help clarify 
the disparity in the literature, Peos and colleagues will be the first to examine a long-form IER regime 
alternating three-week blocks of ER with one-week blocks of EB in resistance-trained athletes [106] 
(See Figure 4). 

 
Figure 4. Long-form IER protocol designed by Peos and colleagues. (A) Fat mass, fat free mass, and 
body weight measured at 0 weeks, 15 weeks, and at 6 months in the moderate intermittent energy 
restriction group (mIER); (B) muscle performance, resting energy expenditure, a drive to eat, and 
levels of appetite-regulating hormones measured at 0 weeks, 15 weeks, and 16 weeks; (C) mood states, 
diet acceptability, physical activity, and sleep quality measured at 0 weeks, 7 weeks, and 15 weeks. 

While attenuation of the decline in REE has been observed with some IER protocols when 
compared to CER, it remains to be seen whether these dietary regimes also result in minimisation of 
some of the other adaptive responses associated with ER. Under some circumstances, a number of 
the adverse metabolic and hormonal outcomes associated with weight loss have been reported to be 

Figure 4. Long-form IER protocol designed by Peos and colleagues. (A) Fat mass, fat free mass,
and body weight measured at 0 weeks, 15 weeks, and at 6 months in the moderate intermittent energy
restriction group (mIER); (B) muscle performance, resting energy expenditure, a drive to eat, and levels
of appetite-regulating hormones measured at 0 weeks, 15 weeks, and 16 weeks; (C) mood states,
diet acceptability, physical activity, and sleep quality measured at 0 weeks, 7 weeks, and 15 weeks.

There is evidence that levels of leptin [116] and thyroid hormones [117] can be temporarily
increased following short-term overfeeding. In one trial, the subsequent elevation in leptin following
overfeeding resulted in a 7% increase in TDEE [118]. These findings have caused speculation among
some athletes and coaches that refeed periods may stimulate an increase in circulating levels of
these regulatory hormones leading to temporarily inflated metabolic output and reversal of adaptive
mechanisms associated with ER. However, it remains to be seen whether the same stimulatory
effect on leptin release and thyroid activity can be achieved with controlled refeeding during IER
where participants temporarily increase energy intake to levels for EB, as opposed to overfeeding.
If this was indeed the case, the stimulatory effects on energy expenditure and fat loss via increased
thyroid and leptin output, in conjunction with leptin’s influence on satiety, would likely decrease
the drive to eat—enabling better dietary adherence—and facilitate greater weight loss efficiency.
Recently, in a series of in-depth interviews with seven experienced male competitive bodybuilders,
participants frequently reported the implementation of refeeds during contest preparation [119].
According to the participants, the purpose of refeeds was to “prevent downgrades in energy
expenditure, replenish intramuscular glycogen stores, and provide mental refreshment.” Some
participants claimed better fat loss, muscle retention, and less reduction in energy expenditure when
using refeeds during pre-contest weight loss, compared to weight loss without refeeds. However, it is
unknown how the participants were able to perceive such differences.

4.3. Limitations of the Existing Literature

The current body of research suggests IER may be offered as a viable, albeit not superior,
alternative to CER for management of body composition. However, several limitations persist. Firstly,
many IER protocols are collectively grouped together in systematic reviews and meta-analyses despite
substantial heterogeneity between dietary regimes, suggesting a notion that all IER models are similar
in design and efficacy. Therefore, it is difficult to determine whether equivalent findings in many of
these reviews were due to certain IER manipulations or IER itself. An additional limitation is the
inclusion of IER regimes that still prescribed an energy deficit (albeit minimal) during refeed periods,
or trials where participants were instructed to eat ad libitum on occasion, but ate far less than expected
and thus did not attain EB. As previously mentioned, the attenuation of adverse responses to ER
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using long-form IER protocols appears to be dependent on the restoration of true EB [107,108]. Hence,
comparable findings between CER and IER protocols that did not establish EB during refeed periods
should be expected. Another concern for a number of trials included in the reviews is whether there
was sufficient statistical power to detect sensitive differences in the loss of FM and FFM between
diet arms.

5. Practical Considerations: Intermittent Energy Restriction for Athletes

As the majority of above-mentioned research is limited to overweight and obese populations, it is
unknown whether athletes respond to IER in a similar fashion. Athletes commonly need to reduce
weight for sport purposes, so the following will take use of the available literature to discuss some
of the practical strategies athletes considering IER could use to engage in the most evidence-based
weight loss approach. We will discuss implications of incorporating resistance exercise during IER
and considerations for the size of the relative energy deficit, the duration of weight loss, and dietary
composition. While randomised controlled trials exploring IER in active individuals of a healthy body
composition are scarce, there is evidence of athletes already adopting this dietary strategy [2,120,121].
However, there is a lack of consensus among coaches and dieticians on how to successfully employ
IER in athletes, with many IER protocols being based on speculation or anecdotal evidence.

5.1. Resistance Exercise

As FFM is a critical predictor of REE, minimising losses may enhance long-term weight loss success
and prevent rapid weight regain by abating metabolic downturn. A commonly cited ‘rule’ suggests
that ~25% of weight loss will be FFM, with the remaining 75% FM [33]. Yet this is inappropriate,
often underestimating the proportion of FFM lost during weight loss [10]. Previous findings report
~40% of weight loss was accounted for by FFM in normal-weight active army rangers after losing
10 kg over 8 weeks [122]. In lightweight rowers, 6% body weight loss over 8 weeks resulted
in 50% attributed to FFM loss [123]. However, evidence suggests that resistance exercise may
preserve FFM during weight loss in both men and women with either healthy weight or obesity,
completing moderate (~2000 kJ ER per day) or severe (~3200 kJ very-low-calorie-diet) ER [120,124–126].
Thus, resistance exercise appears to be a worthwhile strategy for athletes to implement during IER.
In keeping with this stand, elite athletes undergoing moderate ER (0.7–1.4% absolute body weight loss
per week) who concomitantly undertook four intense resistance exercise sessions per week were shown
to retain their FFM [127]. Additionally, moderate weight loss in female athletes performing weekly
aerobic and resistance exercise did not cause reduction in their FFM after four weeks, despite the
participants achieving absolute body weight losses of 0.5 kg per week [128]. However, preserving FFM
during ER appears to be extremely difficult for very lean male and female athletes, regardless of intense
resistance exercise [129–131]. In elite lean male bodybuilders (9.1% body fat prior to beginning ER),
nine weeks of ER reduced percentage body fat to 5.0% but was accompanied by a significant loss of
FFM from 90.60 to 88.14 kg [130]. Furthermore, in five lean athletic females and five female competitive
bodybuilders, 12 weeks of ER in preparation for a contest resulted in a 5.80 kg loss of body weight,
with 23.8% of this weight loss accounted for by reductions in FFM [131]. With the evidence considered,
it appears that adiposity has a protective effect against loss of FFM during ER and should therefore be
of greater concern for lean individuals considering weight loss interventions. As a final note concerning
resistance exercise prescription—IER may have particular application to training athletes by allowing
the coordination of refeed periods with key performance outcome-focused training sessions/blocks.
Such a tactic would provide optimal nutritional support for these sessions while potentially negating
the unwanted performance consequences of sustained daily ER.

5.2. Avoiding Severe Energy Restriction

A limitation of some IER protocols is that the level of restriction is severe, particularly with IF. In a
recent review of weight loss composition [33] and FFM–FM interrelationships in humans [132], it was
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recognised that greater degrees of ER are often accompanied by larger relative FFM losses. In addition
to poorer FFM retention, severe ER has previously been associated with less weight loss efficiency,
greater metabolic fluctuation, and excessive hyperphagia when compared to more moderate ER in
athletes, and in overweight individuals [127,133–136]. Furthermore, adhering to intermittent severe
reductions in energy intake may prove difficult for some people, as evidenced in a systematic review
which identified an increase in appetite and irritability in individuals assigned to IF [29]. In most
instances, it would seem wise for athletes to avoid severe ER due to potential adverse health and
performance outcomes. As recognised in previous reviews and a recent consensus statement from the
International Olympic Committee [1,2,18,127], these outcomes include reductions in muscle strength,
glycogen stores and reflexes, and increased risk of injury due to fatigue. Published scientific trials
also demonstrate that gradual weight loss rates are superior to aggressive ones for athletes. In female
athletes, 0.5 kg of weight loss per week was preferable over 1 kg per week after 4 weeks of ER, with a
30% greater reduction in testosterone levels and a 5% decrease in bench press strength in the faster
weight loss group [128]. Additionally, comparing weekly weight loss rates of 0.7% to 1.4% (of absolute
body weight) in elite athletes displayed greater fat loss (31% ± 3% versus 21 ± 4%) and an increase in
FFM in the slower group versus no change in the faster group (2.1% ± 0.4% versus −0.2% ± 0.7%,
respectively) [127]. As previously discussed in a recent review, it seems wise to tailor energy deficits
during ER to cause moderate weight loss of 0.5–1% of body weight per week, to minimise FFM loss
and performance decrement [137]. With the evidence considered, an athlete considering IER should
be encouraged to adopt moderate, as opposed to severe, ER. As a practical example of moderate ER,
this could involve a maximum of 35% restriction of energy intake relative to weight maintenance
energy requirements [138].

5.3. Duration of Weight Loss and Refeeds

Recent findings demonstrated that a diet involving IER which cycled two weeks of moderate ER
with two weeks in EB was superior to moderate CER in men with obesity, in terms of fat loss and
maintenance of REE after 12 weeks of ER [22]. However, a caveat of this IER model is the considerably
greater time required within the intervention in the IER group (30 weeks versus 16 weeks), despite both
groups completing equal time in ER. Typically, athletes will reduce body weight for competition over
8–16 weeks [1], so the above IER protocol may seem unattractive to athletes by significantly extending
the duration of the weight loss phase. A worthy question is, could the same increase in fat loss
efficiency, and the attenuation of REE reduction be achieved if blocks of EB were less frequent and
of less duration (hence reducing total intervention duration)? Such a result may increase the appeal
of IER to the athletic community. Peos and colleagues aim to answer this question by investigating a
three-week-ER–one-week-EB model [106].

As an additional consideration, it might be important that periods of EB implemented during
IER are not too short, as available research on overweight adults suggests that the reversal of some
of the compensatory responses to ER may require at least 7–14 days in EB [107,108,139,140]. In one
trial, it was observed that reductions in REE consequent to ER in obese women could persist ≥8 weeks
post-weight loss despite an increase in energy intake and weight stabilisation [141]. The persistence
of some of the adaptive responses to ER beyond the weight loss period has also been observed in
active people with a healthy body composition. Twenty-seven female fitness competitors completed
four months of ER and successively reduced their FM by ~35–50% (DEXA, bioimpedance, skinfolds,
p < 0.001) [142]. After a 3–4-month recovery period comprising an increase in energy intake to pre-diet
values and concomitant reduction in aerobic exercise, testosterone and thyroid hormones (T3) had still
not returned to baseline.

These findings suggest that ER awakens the body’s homeostatic defence system in a manner that is
persistent, and not easily counteracted. Interestingly, short-term 24–48 h refeed periods are commonly
implemented in athlete weight loss practice [2,100,101,119,143]. While available literature does not
indicate that the complete resolution of the adaptive responses to ER is likely with such short-term
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bouts of refeeding, it is unknown whether this strategy could still provide partial normalisation to
pre-diet values—and if so—what implications this may have on weight reduction efforts. Although the
effects of short-term refeeding (24–48 h) has not been examined extensively in trials involving
athletes, aggressive 24 h refeeding has been investigated in energy-restricted women with suppressed
luteinizing hormone pulse frequency (−57% to 8.1 +/− 1.5 pulses per 24 h) and thyroid hormone
levels (T3 −22% p < 0.005) [144]. Following one day of refeeding (~375 kJ per kg of FFM), the acute
increase in energy intake was not sufficient to restore thyroid profiles or luteinizing hormone pulsatility.
However, in a second randomised controlled trial, 48 h of refeeding after a three-day fast restored
luteinizing hormone pulsatility in a group of women within 15% of their ideal body weight [145].
Furthermore, better maintenance of REE during weight loss was observed using weekly 48 h refeeds
versus CER in a cohort of resistance trained athletes [100,101]. Therefore, the evidence suggests that
not just the magnitude of energy intake but also the time spent within EB is important in achieving the
reversal of some of the adaptive responses associated with ER.

6. Dietary Considerations: Intermittent Energy Restriction for Athletes

The effect of varying macronutrient ratios within a given energy quota has received considerable
research attention. ER induces weight loss by imposing an energy deficit, regardless of whether a
particular diet is geared toward manipulation of a certain macronutrient (e.g., low fat, low carbohydrate,
and high protein) [21,146]. However, approaching weight loss in a solely “energy in/energy out”
manner fails to consider the effects dietary composition may have on additional outcomes including
the composition of weight lost, satiety, the thermic effect of feeding, and ease of compliance. As for
micronutrition, athletes will typically not require vitamin and mineral supplementation while
consuming adequate energy to maintain body weight from a variety of food sources. However,
during ER (particularly severe ER), or if the diet consists largely of foods low in micronutrient
density it may be necessary to consume a vitamin/mineral supplement to reach daily micronutrient
requirements. For further reading on this topic, we direct the reader to [147].

6.1. Protein Intake

Protein increases satiety and has a higher thermic effect of feeding compared to carbohydrate
or fat, so higher protein (>25% of energy intake) diets may be beneficial to weight management
by increasing energy expenditure and improving compliance [148–151]. As the success of a weight
loss diet is ultimately determined by adherence to a set intake, ease of compliance should be an
important consideration. Reduced energy intake was reported in healthy individuals fed an ad libitum
high-protein diet (30% of energy intake) versus an isocaloric lower protein diet (15% of energy intake),
demonstrating the satiating effects of dietary protein [152]. High protein diets also exert stimulatory
effects on muscle anabolism, reducing FFM losses during ER [152–154]. In resistance-trained athletes,
high protein intake (~2.3 g/kg) during weight loss led to retention of FFM, but lower protein intake
(~1 g/kg) during weight loss led to loss of FFM [30]. Collective literature suggests that a protein intake
of 1.2–2.2 g/kg of absolute body mass is sufficient for athletes in positive EB [153–156]. However,
a recent systematic review indicates a range of protein intake from 2.3–3.1 g/kg of FFM may be more
appropriate for athletes undergoing ER with concurrent resistance exercise [137]. High protein intake
is therefore a recommended dietary strategy for athletes to implement during IER, associated with
increased satiety, a high thermic effect of feeding, and attenuated FFM losses. Protein supplements,
protein dosing in close proximity to resistance exercise, and other dietary supplements including
creatine and HMB may aid in FFM retention during ER, but a review of these topics is beyond the
scope of this article. For further reading on these topics, we direct the reader to [137].
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6.2. Carbohydrate Intake

6.2.1. The Carbohydrate-Insulin Fat Loss Hypothesis

It has been suggested that a low carbohydrate diet may facilitate weight loss by providing a
metabolic advantage [157]. This is based largely on the “carbohydrate-insulin” hypothesis that a
lower carbohydrate intake will expedite lipolysis via diminished insulin activity. On the contrary,
a recent meta-analysis concluded that a low carbohydrate diet was no more effective than a low fat
diet in terms of weight loss [158]. Furthermore, a subtype of the low carbohydrate diet, the ketogenic
diet, elevates levels of circulating ketones causing a physiological state known as nutritional ketosis.
By restricting carbohydrates to less than 10% of total energy intake, ketosis has been proposed to
cause a weight loss advantage by reducing insulin-mediated inhibition of lipolysis and enhancing fat
oxidation through the utilization of ketone bodies [20]. However, a recent review has since determined
that, when diet interventions match protein and energy intake between ketogenic and non-ketogenic
conditions, no fat loss advantage to a ketogenic approach is observed [159]. Collectively, this suggests
that the effectiveness of a weight loss diet is not dependent on ratios of carbohydrate and fat intake
but instead the absolute amount of energy and protein ingested.

6.2.2. Performance Considerations

Regardless of an athlete electing to take an intermittent or continuous approach to ER, a key
concern is whether the composition of the diet is sufficient to support training and performance
demands. Carbohydrate provides a versatile substrate for muscular work, supporting physical
activity over a wide range of intensities due to its use by both anaerobic and aerobic pathways [160].
Higher carbohydrate intake may be preferable over higher intake of dietary fat by improving
exercise efficiency, due to the greater yield of ATP per volume of oxygen deliverable to the
mitochondria [161,162]. Additionally, evidence suggests that inadequate carbohydrate intake can
impair both strength [163] and endurance performance [164]. Furthermore, the depletion of glycogen
and blood glucose stores via low carbohydrate availability is associated with muscular fatigue,
reduced work rate, and increased perception of effort [160]. Guidelines for carbohydrate intake
recommend a range of 3–5 g/kg of absolute body weight per day for athletes competing in low
intensity, skill-based sports and 6–10 g/kg/day for endurance sport athletes (1–3 h/day moderate to
high intensity exercise) [165]. Higher carbohydrate intakes may also be preferable for bodybuilders,
as a recent cross-sectional study recognised that, out of 51 competitors, those placing in the top five
had greater carbohydrate intakes at the start of contest preparation (5.1 versus 3.7 g/kg of absolute
body weight) than competitors who did not [143]. During ER, it may not be possible to reach the
above carbohydrate recommendations with simultaneous high protein intake and low energy intake.
Nonetheless, where protein targets are reached, it seems practicable for athletes undergoing IER to
allocate a majority of their remaining energy allowance to carbohydrate.

6.2.3. Refeeds

As discussed in a previous review, increased carbohydrate ingestion increases intramuscular
glycogen storage, which may improve resistance exercise performance and recovery time, and allow an
athlete to tolerate higher training volumes [166]. In a recent study, CrossFit athletes who increased their
carbohydrate intake to 6–8 g/kg/day for three consecutive days demonstrated greater improvements
in repetitions completed during a 12 min test compared to athletes with a carbohydrate intake
<6 g/kg/day [167].

Leptin release also appears to be particularly responsive to increased carbohydrate
intake [118,168]. An influx of carbohydrate on refeed days could also lead to a more pronounced
muscle protein synthesis response if IER is applied in concert with resistance exercise through the
insulin-mediated activation of the Akt/mTORC1 pathway [169]. Positive muscle protein balance could
be further enhanced by insulin-mediated reductions in cortisol and muscle protein breakdown [170].
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Although yet to be confirmed in the context of IER, it is possible that a more pronounced anabolic
(or diminished catabolic) response to resistance exercise provided via carbohydrate refeeding could
reduce FFM losses during ER. The current scientific literature suggests that preference should be given
to increasing carbohydrate intake during refeed periods as opposed to increasing intake of protein or
dietary fat.

As an additional theoretical rationale for carbohydrate-dominant refeeds, ER leads to an increase
in whole body sensitivity to insulin and a concomitant alteration in both carbohydrate and lipid
metabolism [171,172]. Specifically, ER has been demonstrated to cause suppression of postprandial
and 24 h fat oxidation [173–175], with carbohydrate becoming the preferential fuel source in peripheral
tissues for energy requirements [79,91,176]. Such a response increases the potential for dietary fat to be
diverted toward adipose tissue as opposed to oxidative pathways. Preferential use of carbohydrate
for energy needs while trafficking fat toward adipose is the most energetically efficient means of
restoring depleted energy reserves, with the energy cost of depositing dietary fat (<2% of nutrient
excess) being far less than the cost of depositing excess glucose (~25% of nutrient excess) via de novo
lipogenesis [177]. Thus, low dietary fat/high carbohydrate refeeds may be superior to high fat refeeds
in individuals undergoing ER with perturbed fuel metabolism, which favours the trafficking of a
substantial amount of dietary fat toward lipid pools, in a system primed for very energetically efficient
weight and fat regain.

6.3. Fat Intake

Sufficient dietary fat is an essential component of a balanced diet, facilitating the
uptake of fat-soluble vitamins, supporting cell membrane structure, as well as providing
energy [160]. Insufficient dietary fat intake may also lead to a decline in testosterone levels [178],
potentially threatening the maintenance of FFM. However—as reviewed previously—research
suggests that a high fat diet may impair an athlete’s ability to perform optimally during training
and competitive efforts [179]. Studies using CER implemented with regular resistance exercise
also demonstrate that higher-fat, lower-carbohydrate approaches [151,180] may be less effective
than lower-fat, higher-carbohydrate approaches for preserving FFM [30,127]. Thus, if resistance
exercise is implemented during IER then a higher carbohydrate intake in place of dietary fat
may facilitate greater FFM preservation, likely through the maintenance of training volumes.
Typically, dietary recommendations for athletes during ER are to maintain an adequate but lower
end dietary fat intake (15–20% of energy intake) while emphasizing carbohydrate intake to fuel
performance [1,137,160,165]. Of note, the above-listed nutritional considerations for the athlete are not
exhaustive. For a more comprehensive examination of the implications of diets and body composition,
readers should refer to the recently published position stand from the International Society of Sports
Nutrition [21].

7. Summary

Athletes are known to have high levels of physical activity energy expenditure. Despite this,
dietary interventions may be required to reduce body weight or body fat for maximising chances
of competitive success. Ideally, this should be achieved via safe and effective nutritional strategies
that minimise loss of lean tissues, health, and performance and reduce reliance on extreme or rapid
weight loss practices. While yet to be demonstrated in athlete trials, IER is an effective means of
reducing energy intake, body weight, and body fat. However, more importantly, some research
suggests that IER may yield benefits over traditional CER by reducing some of the compensatory
responses to ER, thereby increasing fat loss efficiency and reducing the likelihood of rapid weight regain.
Furthermore—though yet to be confirmed—it is feasible that the implementation of high-carbohydrate
refeeds may facilitate the maintenance of higher training volumes and augment the anabolic response
following resistance training during these periods, potentially reducing FFM losses during ER. It is
also possible that additional nutritional support provided by the coordination of refeed periods with a
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high volume or outcome-focused training phases/sessions may lead to improved performance. Finally,
IER may be more acceptable to athletes as ER is only required during certain periods of the weight
loss phase rather than the entire duration. While some advantages to an IER approach have been
observed in non-athlete populations, we cannot yet confidently extrapolate these findings to athletes.
Additionally, a number of the above-proposed benefits are still speculative.

Given the deficiency of research on IER in the context of athletes, optimal nonlinear dietary
strategies are yet unknown. As such, there is a significant research opportunity for investigators
interested in exploring various patterns of restriction (e.g., duration and level of energy intake for
ER and refeed periods, ratios of ER to refeeds) and the manipulation of other dietary variables
(e.g., macronutrition) to clarify how IER should be implemented in athlete populations as well as
in the general public (if at all). Future investigation in the realm of IER should explore whether the
recruitment of active individuals with healthy body composition, and the implementation of resistance
exercise and optimised macronutrient intake would influence results achieved with IER. Nonetheless,
we have provided a number of practical recommendations for an athlete wishing to implement IER in
pursuit of his/her body weight or composition goals.

• Avoid severe IER and/or rapid weight loss. Severe ER may cause greater FFM losses than
moderate ER, particularly in lean athletes. Severe ER may also adversely affect health and
performance outcomes including reduced muscle strength, glycogen stores, and reflexes and
increase the risk of injury due to fatigue and loss of FFM. It would be practicable for an athlete to
adopt a moderate level of ER that encourages absolute body weight losses of 0.5–1% per week.
Alternatively, an athlete may elect to reduce energy intake by a maximum of 35% relative to
energy requirements for weight maintenance.

• Resistance exercise. Athletes implementing IER should be encouraged to partake in regimented
resistance exercise as a means to attenuate FFM losses. Greater retention of FFM will likely
minimise performance decrement during ER and may lead to greater fat loss efficiency by
mitigating compensatory reductions in REE.

• Duration and ratios of ER and refeeds. With the limited human research available, a conservative
practical recommendation is to alternate two weeks of moderate ER with two weeks in EB.
Currently it is unknown whether this manipulation of energy intake is ideal for maximal fat loss
and FFM retention or if additional arrangements of ER and refeeds may be superior.

• Coordinating refeed periods. It may be advantageous to synchronise intervals of EB with
outcome-focused or high-volume training periods. This tactic may allow the athlete to perform
optimally during training sessions by providing additional nutritional support and negating the
adverse consequences of sustained, daily ER.

• High protein intake. High protein intakes may be beneficial to an athlete during IER by reducing
FFM losses, providing greater satiety and increasing energy expenditure through the thermic
effect of feeding. A daily protein intake range between 2.3 and 3.1 g/kg of lean body mass
(which equates to approximately 2.0–2.6 g per kg of absolute body mass for an 80 kg athlete with
15% body fat) is likely an appropriate practical recommendation for athletes undergoing IER with
concurrent resistance exercise.

• Emphasizing carbohydrate intake during refeeds. Although yet to be confirmed, it seems wise to
place emphasis on increasing intake of carbohydrate during refeed periods opposed to increasing
protein or fat. Elevated levels of leptin following carbohydrate feeding may cause stimulatory
effects on energy expenditure and suppress appetite, leading to greater fat loss efficiency and
easier diet adherence. Greater carbohydrate availability during refeed periods may also result
in more pronounced anabolic responses when IER is applied in concert with resistance exercise,
potentially reducing FFM losses during ER.
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